. B
o b

A )
S S R N

MRC Pechnical Swumary wseport #2777

e

ey A,
Pt

o

o
bt

-

SENGITIVTTY ANALYSTS OF
INITT AL VATULE PRORLEMS WILN
MIXED ODE'S AND ALCUBRATC EOUATTONS

|
Y
oy
M
O
P
h
&)
<

)
Makin Caracobnion : : * ‘ :E.'
and ’ ‘ ‘ e
Warren . Etewart ;
B3
LS%
Mathematics Research Center o
sl
, University of Wisconsin—Madison :3

610 Walnut Street
Madison, Wisconsin 53705

\
e i ol B o
o~ <
=8 o B

boevembor 1984

(Received November 5, 1984)

DT FILE COPY

3

L
AN

DTIC

FLECTE

Approved for public releas 4
Distribution uniimited MAYQ 198E:

5 e wvr v o«
u

¥
bl Sl

<&
[

‘

WP

D I
Iy

Sponsored by

U. S. Armv Rkesearch Office National Scicnce TFoundation L*
', O. Boy 02211 Washington, DC 20550 7]

Research Triangle Park
North Carolina 27709

S SRR ORI X
oL . - R A e et
.- N - - - o - DR N N LR ) * .
FETRTIGIER WL T % 08, P .:r_f-_\'u 5 n.'tm_'.‘ FRYREIR ATty -("_.n\:. \':h\".-\"..)' -~




UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

SENSI/IVITY ANALYSIS OF INITIAL VALUE PROBLEMS
WITH MIXED ODE'S AND ALGEBRAIC EQUATIONS

Makis Caracotsios and Warren E. Stewart

Technical Summary Report #2777

December 1984

K ABSTRACT
An efficient method is described for sensitivity analysis of nonlinear
initial value problems, which may include algebraic equations as well as
ordinary differential equations {ODE's).<-
The Tinearity of the sensitivity equations is utilized to solve them
directly via the local Jacobian of the state equations. The method is
implemented with the implicit integrator DASSL and is demonstrated on a

stiff industrial reaction model.
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SIGNIFICANCE AND EXPLANATION

Many physical systems are modelled by systems of ordinary differential
and algebraic equations with initial conditions. The solution vector u
depends on the time t, and on a vector 8 of unknown parameters. This
report deals with the calculation of the first-order parametric sensitivities,
wik(t.g) = aui/aek. which are useful in parameter estimation, system design
and control,

The methcd given here takes advantage of the similarity of the backward
difference forms of the u-equations and W-equations, as well as the linearity
of the W-equations, to achieve unusually fast solutions with minimal memory
requirements. The method has been implemented as a modification of the
program package DASSL. Numerical results are g{ven for a chemical kinetic

example.

- The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors cf this report,
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SCOPE

With the rapid development of digital computers, increasingly realistic
mathematical models are being used to investigate chemical phenomena., New
mechanistic features, however, call for new physicochemical parameters whose
values may not be accurately known. Consequently, there 1s an increasing
need for parametric sensitivity analysis of proposed differential and
algebraic models.

Parametric sensitivity analysis is a very active research area.
Extensive reviews can be found fn Rabitz et al. [14], and in
Tilden et al. [17]). Applications occur in every engineering and scientific
discipiine, Potential areas of application in chemical engineering include
optimization, parameter estimation, model simplification, process
sensitivity and multipiicity, experimental design and many more.

In this paper we address the problem of numerical computation of
sensitivity functions for systems of ordinary differential and algebraic
equations, We develop a simple, efficient algorithm for this purpose by

extension of a standard im.1i¢cit integrator.
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SENSITIVLITY ANALYSIS OF INITIAL VALUE PROBLEMS
WITH MIXED ODE'S AND ALGEBRAIC EQUATIONS

Makis Caracotsios and Warren E. Stewart

PROBLEM STATEMENT,

Consider a dynamic system, described by the following set of

differential and algebraic equations:
Bu'(t) = f(t,y(t);Q) (la)
u(t'to) = Ho(ﬂ) (1b)

Here u is an n-dimensfonal vector of state variables, 8 is an m~dimensional
vector of time-independent parameters and E is an (n,n) matrix of constant
coefficients. Most frequently in chemical kinetics calculations the matrix

E assumes the form

L(S): Q
E - .ooosoono (2)
I

where I(S) is the {dentity mtrix of order s. If s = n, system (la) con-
sists of purely differential equations, If 1 < s < n, system (la) consists
of ordinary differential and algebraic equations, The latter case arises,
for instance, in analysis of reaction schemes where equilibria give
algebraic constraints on the concentrations.

We define the (n,m) matrix W(t) of sensitivity functions as

ayl(t)

- (3)

yit): =

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by
the National Science Foundation under Grant No. CPE-8308748.
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This matrix satisfies a set of differential/algebraic equations which can

be derived by partial differentiation of equations (la), (1lb) with respect

to the parameter vector 6:

EX (t) - J(t)y(t) = 3 f(t,4(t);q) (8a)
ayn(8)
H(t=ty) = -gg_S— (4b)

where the matrix J(t) (shorthand for J(t,u(t);§)) fs defined as

J(t): = ':i £lt,y(t);Q) (5)

Various properties of equations (4a) and (4b) are described in Tomovic

and Vukobratovic [18]. The most striking feature of these sensitivity
equations is that they are linear, regardless of the linearity or
nonlinearity of the state equaticns (la) and (1b). The problem studied herg
1s the numerical computation of the matrix W(t) from equations (4a)

and (4b).

LITERATURE REVIEW AND THEORETICAL BACKGROUND

Before describing the new algorithm, we review a few known facts about
the solution of mixed systems of ordinary differential and algebraic
equations, Several investigators [6], [7], [15], have considered this
subject and recently Petzold [11] has published an algorithm called DASSL
for the solution of such systems.

Not all systems of differential/algebraic equations are solvable. The
reader is encouraged to consult the literature, Petzold and Gear [12], and
Campbel) and Petzold [2], on this peculiar feature of mixed systems.

However, for the systems that we are considering, where the matrix

-, .'-"- B
RO
S o '




E assumes the form (2), sufficient conditions are known [12] for the
solvability of (la) and (ib).

Let the function f(t,u(t);8) be continuously differentiable
with respect to u(t). Now consider the Jacobian matrix J(t) defined hy
equation (5) for the system (la). If we partition the Jacobian matr‘.

according to the partition of E, i.e.,

d1p(t) o dqp(t)
Q(t) = ctl.o.oc:aolcoooo (6)

where J,,(t) is an (s,s) matrix, then the system (la) and (1b) is

solvable if

det ,,(t) # 0 for all t (7

Under this condition, the solution obtained by a k-step backward
differentiation formula algorithm with k ¢« 7 and fixed step size h converges
to O(hk) if a1l initial values are correct. Further aspects of
equations (la) and (1b) and thefr numerical treatment are discussed
in Petzold [13].

Let us now review some of the methods used for the computation of the
sensitivity matrix W(t). With one exception (Stewart and Sérensen [16])
the known methods are for systems of ODE's only; that is, for systems with
£ = 1", The available algorithms include the Fourier amplitude test [4],
direct differential methods [5], Green's function methods [8], the

analytically integrated Magnus method [14] (a modification of the Green's 'y

function method), and finite difference methods. The Green's function




method and its variations exploit the fact that the sensitivity equations
are linear inhomogeneous with time varying coefficients; consequently they
can be solved by first calculating the solution of the homogeneous part and
then determining the particular solution corresponding to each parameter,

Several authors have proposed to solve the sensitivity equations by
extending known solution algorithms for the state equations, This idea is
based on the identity of the coefficient matrices in the sensitivity
equations to those in the locally linearized form of the state equations
on the locus u(t). Stewart and S¢rensen [16], Vemuri and Raefsky [19],
Lojek [10], and Hwang [9] have developed various aspects of this method;
nevertheless the 1dea is sti11 under development.

In the present work, we exploit fully the similarity of the sensitivity
and s;ate equations, by building the sensitivity analysis into a robust
differential/algebraic equation solver., Then we 1llustrate the algorithm

by solving a stiff industrial kinetics problem.

MATHEMATICAL DEVELOPMENT OF THE SENSITIVITY ANALYSIS ALGORITHM

One of the most important steps in developing the sensit{vity analysis
algorithm was the selection of the integrator. For mixed systems of
differential and algebraic equations, there are several codes

[7], [11], [15] designed to perform the integration. These codes are

primarily based on an jdea developed by Gear [6]; specifically, the

ﬁ; derivative y'(t,, ) 1s approximated by a backward difference formula with
i

T adaptable order and step size, and the resulting system of nonlinear

:Sﬁ equations 1s solved for u(t,,.q) via a modified Newton scheme.

B&f We chose for this work the package DASSL developed by Petzold [11].
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This package is portable, robust and easy to use. We tested the code
successfu11y.on a wide variety of stiff problems, both differential and
mixed, before adding the sensitivity analysis algorithm,

First, consider the solution of state and sensitivity equations
(1a), (1b), (4a), (4b) as a single system. In this approach, one needs the
Jacobjan matrix of the total! system (1la) and (4a). If we partition the

sensitivity matrix W(t) into column vectors as

M) = Dy (t) |Wp(t)] +oe Ing(t)] (8)
where
(t) e i=1,2 (9)
| PR — = 1,2, *** D,
i 38,

then the Jacobfan matrix J*(t) (shorthand for g*(t,u(t),N(t);8)) i
~ of the total system (la) and (4a) is '

B d(t) Q Q e o 0 o 8 s » q ‘.

jl(t) Q(t) q s 8 s 6 8 o 8 Q \

. LH g A Q i

g (t) =} . - . . . (10) :

jm(t) g Q o 0 0 8 0 0 ﬂ(t) :

= - (

.u

3 where ,
% ag(t) 23(t)

:.\_:: gi(t)n mw"(t) +.53-;—— i = 1)2. see (11) ;




The evaluation of J*(t) is a formidable calculation, though a natural
requirement of Newton iteration on the total equation system, (la) and (4a).
A simpler and quicker approach is to solve (la) before (4a) at each time
step, as shown below; then the matrices j;(t) are not required,

Let Q(r)(t) be the local 1nterpo]an; of u(t) obtained fn r Newton
iterations of a kth-order integrator within a given time step. Then the
next iteration will give the interpolant g(r)(t) + eg‘")(t). which

satisfies the following 1inearized form of equation (la)

B M g Me)) = g g e weg M 088 + ok (12)

Hence the correction 44"} satisfies

B g™ = g i s - g M) + ok (13)

when the standard Newton method (with g<r)(t) updated for each iteration)
is used., If eﬁ(r)(t) converges toward zero with increasing r, then
g(r)(t) converges toward J(t), and equation (13) becomes formally similar
to equation (4a)., Therefore, we can defer consideration of equation (4a)
unti g(r)(t) has converged to Q(t) at the current value of t. Then we
can update the sensitivity solution @(t) directly by use of equation (4a),
which has the same coefficients as equation (13) but a different, now
cémputable right hand function. More specifically the corrections

éﬁi(t) are calculated via a single iteration by solving

BN (1)-00t) 4w, () = ~Eg, P ogee) P (e) %’E. £t 4(t);q) + 0(nK)
i

1 =1,2, ¢rem (14)




in which §§p)(t) is the predicted value of gi(t) via a kth-order
predictor formula,

The vectors §;(t) are calculated at the current t as follows:

6 (t) =PI (e) + gg (1) 1= 1,2, ceem (15)

On completion of the update, the 1oc§1 truncation error is tested, and if
necessary the step size h and approximation order k are adjusted to achieve
the specified accuracy for u(t) and W(t).

Numerical tests show that stringent tolerances on u(t) normally lead
to a good solution for !(t) as well, provided that g(t) is updated before
computing é@(t). On the other hand, if the iteration matrix is only
occasionally updated ‘as is usual in implicit integrators), then the local

tolerances on W(t) are essential to control the calculation.

COMPUTER IMPLEMENTATION

The computer implementation of the sensitivity analysis algorithm was
done as follows:

1) The working arrays used by DASSL were modified to provide storage
allocation for the sensitivity functions.

2) An algorithm was written for the automatic formation of the
sensitivity equations,

.3) The integrator in DASSL was properly extended to include the
solution of the sensitivities.

The following definitions were adopted:




1) Iteration matrix Q(t): = ¢E - J(t), where ¢ is a constant which |
depends on step size history

2) Residual of the state equations

Bolt): = B4 (t) = §(t,4(t):g)

3) Residual of the sensitivity equations

The calculation sequence is outlined in the adjoining flow chart,
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Inifialize arrays for
rnew time step
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Compute coefficients for
backward differentiation
formulas
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Predict T(1, T (1, W (1, W'(1)

Solve g(r)(ﬂ AEM- - Eo(t)

YES

Convergence ?

NO




Solve D{t)aW =-R; (1

Estimate local truncation error
for gm.\gm

YES Error < TOL ? NO

Reduce step size and/or

o~ ~y ~ 0
Update T(1), U'(1),W(t),W'(1) select new order

1 |

Yos Step size too small

Selact new order and step or too many failures?

Exit with error

No
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Update u(t), Ry(t) Yesé it~eation matrix current>
t - ,.

Update -

Reduce step size y |
l i

g YES _/'Step size too small NO

or too many failures ?
q $

” '_‘. Exit with error
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NUMERICAL EXAMPLE

The algorithm was tested on a wide variety of problems, ranging from
Tinear and nonlinear systems of differential equations to large systems of
differential and algebraic equations. We present here a batch reactor
example given by the Dow Chemical Company [1]. Figure 1 shows the
proposed mechanism for the reaction system. The time dependent

concentrations are modelled by the following system of differential and

algebraic equations:

ui(t) = ~ku,(tlug(t)

u;(t) = =k uy(thuglt) + k_jupqlt) = kyup(tlug(t)
ug(t) = ko (thug(t) + kquy(thuglt) = k_gug(t)
Ig(t) = K gu (thuglt) + k_gug(t)

ug(t) = kyuy(tduglt) = k_yuyo(t)

Ug(t) = kU (t)ug(t) = kU (Bug(t) + k_quyo(t) + k_gug(t)
U7(t) = -0,0131 + Us(t) + Us(t) + Ug(t) + Ulo(t) (16)

Kzul(t)'

ug(t) T

7
- K3U3(t)
'Y T
3%y
K1u5(t)

1+u (t)

ulo(t)
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Figure 1. Chemical reaction model for the numerical example [1]. The
numhers are used for the enumeration of the chemical species.
as in equation (16).

Slow Kinetic Reactions
K,
k.,

‘A" + BM k. | ‘ABM™

M~ + ’BM = = "MBM™

"M+ ‘AB = 11:3 ~ ABM~
-3

Rapid Acid-Base Reactions

1

"MBMH = =  MBM + 'H?

HA = - A + HT

3 K - ¥
HABM = ABM + H




with initial conditions

ul(O) = 1.5776

8.32

u2(0)

n

uj(O) 0 j=3,4,5,9,10 (17)

u6(0) = 0,0131

0.5{-K, +¥ K§+4K2u1(o) }

U7(0)

u7(0)

u8(0)

The following values of rate and equilibrium constants were used [3]

ky = 21.893 he? Ko gmo1e"1
ky = 2.14 EO9 hr
k, = 12.318 he~l K -1
s =2, r g gmole
(18)
ky = 21,843 heL kg gmote ™
k. = 1.07 E09 hr~d
Ky = 7.65 E-18 gmole Kg~!
K, = 4,03 E-11 gmole Kg~1
Ky = 5.32 E~18 gmole Kg~*
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The natural logarithms of these constants make up the parameter vector g.

du(t)
Our goal 1s to estimate the sensitivity matrix w(t) = -%;—- .

~

The combined system of state and sensitivity functions consists of

1]
> A2 g
o g

LD ety | Y g b gl i ois olb o ' S P28

X 90 equations, 54 of which are differential and 36 are algebraic. This

problem presents a severe test for the DASSL integrator and the sensitivity

. analysis algorithm,

-

X Table 1, summarizes the computational effort for the solution of the

. above problem on a VAX 11/780 computer, A1l calculations were carried out
in double precision, A mixed local truncation error control provided fn

b [11] was used. The tolerances for the sensitivities were equated to the

tolerances of the state variables. The total reaction time considered

{ was 53 hr,

} Figures 2 and 3 show the evolution of the concentration profiles as

& a function of time, while Figures 4 through 11 show the dynamic behavior
N of the sensitivity functions.

,é Sensitivity plots, 1ike those in Figures 4-11, can be of considerable

}: use to the theoretician as well as to the experimentalist. From Figures

4 through 11 we see that all of the rate and equilibrium constants have
comparable effects on the concentrations and therefore we cannot eliminate
- any step from the proposed mechanism in Figure 1. However, a close

inspection of the results reveals the following linear relations:

@ ylt) aylt)

: R Tl e (1)
.’ "1 1

_' k ay(t) ay(t)
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TABLE 1.

Computational effort for the solution of the Dow problem

STATE EQUATIONS SENSITIVITY EQUATIONS

e¥=1,0E-6 ewl.0E~7 e=1.0E-6 e=l,0E-7

Time steps : 191 265 187 264
Function evaluations: 418 587 383 534
CPU secs : 4,0 5.5 23.5 33

* local error test at each time step which requires roughly that

abs (local error) less or equal than rtol+abs(u)+atol
where rtol=atol=e,

-16-
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Figure 3. Concentration functions ui(t) in gmole/kg.
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Figure 4,

Figure 4.

2g(t
Elements of the sensitivity vector iéﬁﬁl . The number
i

% denotes the sensitivity coefficient uz(t) with respect
to znk]. Numbers not shown correspond to sensitivity
functions indistinguishable from zero at all times.
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Figure 9. Elements of the sensitivity vector Qg(t)/annk1.
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Thus, one cannot estimate all parameters nf the model from data on u(t),
Equations (19) and (20) indicate that (kﬂl/Kl) and k_qK3 should

be used as parameters; then the predicted u(t) is invariant to K; and Kj.
This information proved useful in fitting the model (16), (17) to the
published experimental data for this system [3].

CONCLUSIONS AND SIGNIFICANCE

An efficient method has been developed here for the calculation of
parametric sensitivities for mixed systems of ordinary differential and
algebraic equations, The method has been tested successfully on many
problems, ranging from simple ODE's to large stiff systems of differential
and algebraic equations, The scheme has been implemented for a robust

implicit integrator (DASSL), and 1s applicable to any implicit integrator.
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